

A Multidisciplinary Research Journal (A refereed Biannual Published in June and December) Vol. 15, No.2, December 2024 <u>https://research.holvcrossngl.edu.in/</u>

Energy (Adjacency Energy) of a 3-uniform T₂ Hypergraph

Sharmila D. and *Sujitha S.

Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 629 004 Affiliated to Manonmaniam Sundaranar University, Tirunelveli - 627 012

ABSTRACT

Let H be a 3-uniform T_2 Hypergraph of order $n \ge 5$. The adjacency matrix of the 3uniform T_2 Hypergraph is defined by $A(H) = \begin{cases} |\{D_k \in D : (x_i, x_j) \subseteq D_k | if x_i \neq x_j \\ 0 \text{ otherwise} \end{cases}$. The adjacency energy of a 3-uniform T_2 Hypergraph is the sum of the absolute eigenvalues of its adjacency matrix. In H, $AE(H) \ge \Delta^2 + \delta^2 + \frac{1}{\Delta} + \frac{\delta}{\Delta^2}$, equality holds only if n = 11 in H. Keywords: T_2 Hypergraph, 3-uniform T_2 Hypergraph, adjacency matrix, adjacency energy. Subject Classification: 05C65

1 Introduction

The basic definitions and terminologies of a hypergraph are not given here; we refer it [1] and [2]. The concept of a Hypergraph was introduced by Berge in 1967. Later, different authors studied the same concept in [3] and [4]. Seena V and Raji Pilakkat were introduced to Hausdorff Hypergraph, T_0 Hypergraph and T_1 Hypergraph. Based on [5], [6] and [7] we introduced a new class of Hypergraph namely T_2 Hypergraph, 3-uniform T_2 Hypergraph and the parameter adjacency energy is studied for the same. Throughout this article, H is a simple connected 3-uniform T_2 Hypergraph with order n and size m. Here the order and size are the minimum numbers of vertices and edges used to define a 3-uniform T_2 Hypergraph. In A(H), λ_1 is the largest eigenvalue and λ_n is the smallest eigenvalue. The following definitions and theorems are used in the sequel.

Definition 1.1. [5] A hypergraph H = (X, D) is said to be a Hausdorff hypergraph if for any two distinct vertices u, v of X there exists hypergraph D_1 and D_2 such that $u \in D_1$, $v \in D_2$ and $D_1 \cap D_2 = \emptyset$.

Definition 1.2. [6] A hypergraph H = (X, D) is said to be a T_0 Hypergraph if for any two distinct vertices u, v of X there exists a hyperedge containing one of them but not the other.

Definition 1.3. [7] A hypergraph H = (X, D) is said to be a T_1 Hypergraph if for any two distinct vertices u, v of X there exists a hyperedge containing u but not v and another hyperedge containing v but not u.

*Corresponding Author: <u>sujitha.s@holycrossngl.edu.in</u>

Definition 1.4. [8] The adjacency matrix is the square matrix in which rows and columns are indexed by the vertices of H and where for all u, $v \in X$, $u \neq v$, $a_{uv} = |\{d \in D/u, v \in D\}|$ and $a_{uu} = 0$.

Definition 1.5. [8] The adjacency energy of a hypergraph is the sum of the eigenvalues of its adjacency matrix.

Definition 1.6. [9] A hypergraph H = (X, D) is said to be a T_2 Hypergraph if for any three distinct vertices u, v and w in X there exists a hyperedge containing u and v but not w and another hyperedge containing w but not u and v.

Definition 1.7. A T_2 Hypergraph H = (X, D) is said to be a 3-uniform T_2 Hypergraph if every hyperedge contains exactly three vertices.

2 Adjacency matrix and energy of a 3-uniform T₂ Hypergraph

In this section, we find the energy of a 3-uniform T_2 Hypergraph H, using adjacency matrix. Consider a 3-uniform T_2 Hypergraph H given in Figure 1 with 8 vertices and 7 edges.

Figure 1: 3-uniform T₂ Hypergraph

The corresponding adjacency matrix of H is given by

$$A (H) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 2 & 2 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 & 1 & 0 & 0 & 1 \\ 0 & 1 & 3 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 2 & 0 \\ 2 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

The adjacency eigenvalues of A (H) are $\lambda = 5.42, 3.31, 1.43, -1.408, -2.298, -2.588, -3$. Therefore, the adjacency energy AE(H) = 20.314. **Result 2.1.** Let H be a 3-uniform T_2 Hypergraph with $n \ge 6$. Then the adjacency energy $AE(H) \ge \Delta^2 + \delta^2 + \frac{1}{\Delta} + \frac{\delta}{\Delta^2}$, equality holds for n = 11. The below table 1, shows the adjacency energy of a 3-uniform T_2 hypergraph for its order for $n \ge 6$.

Number of Vertices	AE(H)	$\Delta^2 + \delta^2 + \frac{1}{4} + \frac{\delta}{4^2}$
6	10.28	4.32
7	15.2	13.55
8	20.314	13.55
9	23.51	20.32
10	26.04	25.44
11	34.32	34.32
n		$\Lambda^2 + \delta^2 + \frac{1}{2} + \frac{\delta}{2}$
		$\Delta + \delta + \Lambda + \Lambda^2$

Table 1: Adjacency energy of a 3-uniform T₂ Hypergraph

Clearly from Table 1, we can identify that, $AE(H) \ge \Delta^2 + \delta^2 + \frac{1}{\Delta} + \frac{\delta}{\Delta^2}$ for $n \ge 6$.

Result 2.2. Let H be a 3-uniform T_2 Hypergraph with $n \ge 5$. Then $[\lambda_1] = \Delta + \delta$. From the following Table 2, we can easily verify the result.

Number of Vertices	λ_1	[λ ₁]	$\Delta + \delta$			
5	5.78	6	6			
6	4.09	4	4			
7	4.87	5	5			
8	5.42	6	6			
9	6.15	6	6			
10	6.68	7	7			
11	8.27	8	8			
n	•••		$\Delta + \delta$			
Table 2: Values of $\Delta + \delta$						

Result 2.3. Let H be a 3-uniform T_2 Hypergraph with $n \ge 5$. Then $[\lambda_1] \ge \lfloor \sqrt{n} + k \rfloor$, equality holds

n = 6 and 7.

Number of Vertices	λ_1	$\sqrt{n} + k$	$[\lambda_1]$	$\left\lfloor \sqrt{n} + k \right\rfloor$
5	5.77	5.23	6	5
6	4.09	5.45	5	5
7	4.87	5.65	5	5
8	5.42	5.83	6	5
9	6.15	6	7	6
10	6.68	6.16	7	6
11	8.21	6.32	9	6
		•••		
n		•••		$\left \sqrt{n}+k\right $

Table 3: Values of $[\lambda_1]$

alt 2.4. Let H be a 3-uniform T_2 Hypergraph with $n \ge 5$. Then $\left[(\det A(H))^{\frac{1}{n}} \right] = \left[\sqrt{\frac{n + \sqrt{\frac{k}{2}}}{k}} \right]$							
Number of Vertices	$(\det A(H))^{\frac{1}{n}}$	$\left[(\det A(H))^{\frac{1}{n}} \right]$	$\sqrt{\frac{n+\sqrt{\frac{k}{2}}}{k}}$	$\left[\sqrt{\frac{n+\sqrt{\frac{k}{2}}}{k}}\right]$			
5	1.15	2	1.12	2			
6	1.59	2	1.55	2			
7	1.87	2	1.66	2			
8	1.92	2	1.75	2			
9	1.86	2	1.84	2			
10	1.96	2	1.93	2			
11	2.62	3	2.02	3			
n				$\left[\sqrt{\frac{n+\sqrt{\frac{k}{2}}}{k}}\right]$			

Table 4: Values of $(\det A(H))^{\frac{1}{n}}$

Theorem 2.5. Let H be a 3- uniform T₂ hypergraph with $n \ge 5$. Then AE(H) $< \frac{n(\Delta + \delta)^2}{\left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]}$

Proof. We have,
$$[\lambda_1] > \left[\left(det AE(H) \right)^{\frac{1}{n}} \right] = \left[\sqrt{\frac{n + \sqrt{\frac{k}{2}}}{k}} \right]$$

 $[\lambda_1] \sum_{i=1}^n |\lambda_i| > \left[\left(det AE(H) \right)^{\frac{1}{n}} \right] \sum_{i=1}^n |\lambda_i| = \left[\sqrt{\frac{n + \sqrt{\frac{k}{2}}}{k}} \right] \sum_{i=1}^n |\lambda_i|$

Since, $[\lambda_1] = \Delta + \delta > |\lambda_i| \forall i = 2, 3, ..., n.$

Therefore,
$$n[\lambda_1]^2 = n(\Delta + \delta)^2 > \left[\sqrt{\frac{n + \sqrt{\frac{k}{2}}}{k}}\right] AE(H)$$

Hence, AE(H) <
$$\frac{n(\Delta+\delta)^2}{\left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]}$$

Illustration 2.6. Consider a 3-uniform T_2 hypergraph with n = 8. From the Table 1, Table 2

and Table 4, AE (H) = 20.31,
$$\Delta + \delta = 6$$
, $\left[\sqrt{\frac{n + \sqrt{\frac{k}{2}}}{k}}\right]$ 2. Here, AE(H) = 20.31 < 144

$$= \frac{n(\Delta + \delta)^2}{\left[\sqrt{\frac{n + \sqrt{\frac{k}{2}}}{k}}\right]} = \frac{8 \times 36}{2}.$$

Theorem 2.7. Let H be a 3- uniform T_2 hypergraph with $n \ge 5$. Then

$$\begin{split} &\operatorname{AE}(\mathrm{H}) < [\lambda_{1}] + \frac{(n-1)(\lfloor\sqrt{n}+k\rfloor)^{2}}{\left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]}.\\ &\operatorname{Proof. In H, } [\lambda_{1}] \geq \lfloor\sqrt{n}+k\rfloor > \left[\left(\det AE(H)\right)^{\frac{1}{n}}\right] = \left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]\\ &\left\lfloor\sqrt{n}+k\rfloor\sum_{i=2}^{n}|\lambda_{i}| > \left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]\sum_{i=2}^{n}|\lambda_{i}|\\ &\operatorname{Since}\left[\sqrt{\frac{n+\sqrt{k}}{k}}\right] > |\lambda_{i}| \forall i = 2,3,\dots,n.\\ &(n-1)\left(\left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]^{2}\right) > \left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]\left(\operatorname{AE}(\mathrm{H}) - |\lambda_{1}|\right)\\ &> \left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]\left(\operatorname{AE}(\mathrm{H}) - [\lambda_{1}]\right)\\ &\operatorname{Hence, AE}(\mathrm{H}) < [\lambda_{1}] + \frac{(n-1)(\lfloor\sqrt{n}+k\rfloor)^{2}}{\left[\sqrt{\frac{n+\sqrt{k}}{k}}\right]}. \end{split}$$

Illustration 2.8. Consider a 3-uniform T₂ hypergraph with n = 8. From the Table 1, Table 3 and Table 4, AE (H) = 20.31, $\left\lfloor \sqrt{n} + k \right\rfloor = 5$, $\left| \lambda_1 = 6 \right|$, $\left\lceil \sqrt{\frac{n + \sqrt{k}}{k}} \right\rceil = 2$. Here, AE(H) = 20.31 <

 $92.5 = \frac{7 \times 25}{2} + 5$. Hence the above theorem is verified.

3 Conclusion

In this article, we studied the adjacency matrix and its energy for a 3-uniform T_2 hypergraph. Also, we established the bounds of the adjacency energy of the 3-uniform T_2 hypergraph using various graph parameters.

References

- 1. Claude Berge, Hypergraphs: Combinatorics of finite sets, vol.4, Elsevier, 1984.
- 2. Vitaly Voloshin, Introduction to graph and hypergraph theory, Nova 2009.
- Alain Bretto, Hypergraph Theory: An Introduction, Springer, Science & Business Media, 2013
- 4. Kaue Cardoso and Vilmar Trevisan, Renata Del-vecchio, Lucas Portugal, Adjacency Energies of hypergraphs, arxiv: 2106.07042(1), 2021.
- Seena V and Raji Pilakkat, T₀ hypergraphs, International of Applied Mathematics ISSN 0973 – 1768, 10(2017); 13: 7467 - 7478.
- Seena V and Raji Pilakkat, T₁ hypergraphs, International of Applied Mathematics ISSN 0973-1768, 10(2017); 13: 7453 7466.
- Seena V and Raji Pilakkat, Hausdorff hypergraphs, International of Applied Mathematics 29(2016); 1: 145 - 15.
- Rajkumar K. and Renny P Varghese, Spectrum of (k,r)-regular hypergraph International Journal of Mathematical Combinatorics 2(2017),52 - 59.
- 9. Sujitha S. and D. Sharmila, Adjacency Energy of a T₂ Hypergraph, International Conference on Discrete Mathematics (ICDM2021-MSU) ISBN 978-93-91077-53-2.